
EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Experiments on Parallel Polygon Triangulation Using Ear Clipping

Günther Eder∗ Martin Held∗ Peter Palfrader∗

Abstract

We present an experimental study of different strate-
gies for triangulating polygons in parallel. As usual,
we call three consecutive vertices of a polygon an ear
if the triangle that is spanned by them is completely
inside of the polygon. Extensive tests on thousands of
sample polygons indicate that most polygons have a
linear number of ears. This experimental result sug-
gests that polygon-triangulation algorithms based on
ear clipping might be well-suited for parallelization.

We discuss three different on-core approaches to
parallelizing ear clipping and report on our experi-
mental findings. Extensive tests show that the most
promising method achieves a speedup by a factor of
roughly k on a machine with k cores.

1 Introduction

An ear of a planar simple polygon P is formed by three
consecutive vertices (vi−1, vi, vi+1) if the open line
segment vi−1, vi+1 is completely contained in the in-
terior of P (see Fig. 1). It is well-known [2] that (vi−1,
vi, vi+1) form an ear of P if and only if (i) vi is convex,
and (ii) the closure of the triangle ∆(vi−1, vi, vi+1)
does not contain any reflex vertex of P (except possi-
bly vi−1 or vi+1). Hence, if (vi−1, vi, vi+1) is an ear of
P then the line segment vi−1, vi+1 forms a diagonal
of P . Clipping this ear by inserting this diagonal cuts
off the vertex vi, the “base” of the ear, thus reducing
the number of vertices of P by one.

The basic idea of ear clipping is to iteratively cut off
ears until the polygon has shrunk to a triangle. The
algorithm’s correctness hinges upon Meisters’ two-
ears theorem which states that every simple polygon
with four or more vertices has at least two non-over-
lapping ears [4].

Typically, an implementation of an ear-clipping al-
gorithm will operate in two phases. Classification:
Iterate along the contour of P to determine all in-
stances of three consecutive vertices that form an ear
of P . All potential ears are stored in a queue. Clip-
ping: Iteratively pick an ear from the queue and clip
it. As an ear (vi, vj , vk) is clipped and stored in a tri-
angle list, its two outer vertices vi and vk have to be

∗Universität Salzburg, FB Computerwissenschaften,
5020 Salzburg, Austria; supported by Austrian Sci-
ence Fund (FWF) Grant P25816-N15; {geder,held,
palfrader}@cosy.sbg.ac.at.

checked whether they form the bases of new ears after
the clipping of (vi, vj , vk). Every newly found ear is
added to the queue. Note that the queue may contain
candidate ears which are no longer part of the poly-
gon. The process ends for an n-vertex input polygon
P when n − 3 ears have been clipped and, thus, the
triangle list together with the final triangle forms a
complete triangulation of P .

Ear clipping forms the basis of the FIST triangula-
tion algorithm and ANSI-C implementation, Held’s
fast industrial-strength triangulation tool [2]. Key
features of FIST include speed and robustness. While
the basic ear-clipping algorithm has an O(n2) worst-
case complexity, FIST employs multi-level geometric
hashing to speed up the computation to near-linear
time for almost all (real-world and contrived) inputs.
Extensive tests [3] showed that FIST’s careful en-
gineering allows it to run flawlessly on a standard
floating-point arithmetic.

Ear clipping is, ostensibly, limited to triangulat-
ing simple polygons. FIST, however, also handles
polygons with holes by converting them in a pre-
processing step: so-called bridges are inserted to con-
nect all hole polygons directly or indirectly to the
outer boundary polygon, turning a polygon with holes
into one (slightly degenerate) simple polygon, which
can then be triangulated using ear clipping.

vi+1

vi

vi−1

vi−1vi+1

(a)

vi+1

vi

vi−1

vi vr

(b)

Figure 1: (a) An ear defined by the vertices
vi−1, vi, vi+1 where vi is convex; (b) A reflex vertex
vr violates the second condition.

2 Prior Work

Surprisingly little work has been done on parallel tri-
angulations. The literature focuses mostly on (Delau-
nay) triangulations of point sets rather than polygons,
see for instance Rong et al. [6] and Xin et al. [8].

In 2013, Qi et al. [5] introduced a primarily GPU-
based algorithm to compute constrained Delaunay tri-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

31st European Workshop on Computational Geometry, 2015

split linesb

sa

(a)

sb

sa

(b)

sb

sa

p

q

(c) (d)

Figure 2: The repair process used in the divide and conquer algorithm.

angulations. In a first step they compute a Voronoi
diagram, i.e., the dual of the Delaunay triangulation.
Constraints are then added to obtain the constrained
Delaunay triangulation (CDT). Their approach scales
well on the GPU and seems to be the currently best
solution if an NVIDIA GPU is available.

3 Our Contribution

We study the prevalence of ears in our vast set of test
data (see Sec. 5) and find that, on average, about half
of all vertices of a given polygon form the bases of
ears. If we look only at convex vertices then a vast
majority (98 %) of them belong to ears. This is signifi-
cantly more than the two ears guaranteed by Meisters’
theorem [4] and, hence, suggests that clipping many
ears simultaneously is feasible.

We therefore extend the classic FIST ear-clipping
algorithm such that it can operate in parallel. We
present three particular variants: a divide-and-
conquer algorithm, an algorithm that uses a partition-
ing of the contour and a mark-and-cut approach. All
algorithms were implemented within the FIST frame-
work and compared to the conventional FIST.

4 Parallel Ear-Clipping Algorithms

In the sequential version of FIST, on average, about
80 % of the time is spent for classification and clipping
of the ears, while only approximately 20 % is spent
on preprocessing, such as data cleaning and bridge
finding to convert polygons with holes into degener-
ate (weakly-)simple polygons. We therefore concen-
trate our parallelization efforts on the classification
and clipping phases.

4.1 Divide and Conquer

The basic idea is to split the polygon into as many
sub-polygons as CPU cores are available. All sub-
polygons shall have roughly the same number of ver-
tices. Since it seems costly to determine suitable diag-
onals that achieve balanced splits, we simply use ver-
tical lines to split the polygon. Using the Sutherland-
Hodgman algorithm [7], we can split a polygon along
a line ` in time O(n), at a cost of at most O(n) Steiner

points given by the number of intersections between `
and the edges of the polygon. (In practice, the num-
ber of Steiner points seems to be bounded by

√
n for

almost all but contrived inputs.)

We then run one (sequential) FIST instance per
core to obtain a triangulation of each sub-polygon. A
concatenation of the triangulations of all sub-polygons
yields a triangulation of P , albeit with Steiner points
which have to be removed.

Consider a pair of consecutive Steiner points sa and
sb. We remove them and all their incident triangles,
and we repair the contour by re-joining vertices that
were adjacent previously. The removal of incident tri-
angles leaves a hole H which forms a “double star-
shaped” polygon, where every point of H is visible
from at least one of the Steiner points sa and sb, see
Fig. 2b.

Using sa as start vertex, we walk counter-clockwise
along the boundary of H. If we find a vertex that is
not visible from sa, then we store the preceding vertex
as p. If all vertices are visible, then we stop the test
when we reach the second Steiner point sb and store
the last vertex before sb as p. Then we start the same
search clockwise, starting again at sa, and obtain q.

We divide H into two star-shaped polygons H1, H2

by adding the diagonal pq. Each of them has one of
the original Steiner points in its nucleus, see Fig. 2c.
Now every triangle based at a convex vertex of H1

and H2 forms an ear as long as it does not contain
either sa or sb. Hence, both holes can be triangulated
easily.

4.2 Partition and Cut

In this approach, we use the sequential classification
step to partition the contour of the polygon into k
different sets. We choose k to correspond to the num-
ber of cores we want to run on. The sequential FIST
walks along the polygon, tests each vertex triple for
its ear property, and stores all ears in one queue. To
parallelize, we set the number of queues equal to k and
split the polygon into k polygonal chains with roughly
n/k many vertices each. Additionally, we memorize k
contour vertices between the chains. These corner
vertices are important for the parallel clipping to en-
sure that no thread oversteps its partition boundaries;

EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

v0

v1

v2

v3
v4

v5 v6

v7

v8

v9
v10

v11

v12

v13
v14

v15

v16

(a)
v0

v4

v8
v12

(b) (c)

Figure 3: (a) A simple polygon P already partitioned into four chains. (b) The four corner vertices are highlighted.
(c) A partition-and-cut triangulation.

see Fig. 3b.
In the parallel clipping phase, each thread processes

all ears from its queue. As usual, clipping the ear
(vi−1, vi, vi+1) involves checking whether vi±1 has be-
come the basis of a new ear. If so, and if vi±1 is no
corner vertex, then vi±1 is added to the queue.

After all k queues are empty, the parallel clipping
phase is completed. Now we finish the triangulation
with a sequential run of FIST. This will remove the
remaining vertices from our polygon.

4.3 Mark and Cut

This algorithm builds on the fact that every second
ear along the polygon’s contour is non-overlapping.
Hence, we can mark those ears and clip them imme-
diately without conflicts. We only need one additional
data structure, namely an array A to store the indices
of all marked ears.

In the mark phase, we walk along the polygon once
and store the index of every other vertex in A. Ad-
ditionally we only take convex vertices and add flags
to check if a triangle has already been checked for its
ear-property. In the cut phase, we check for each ver-
tex vi in A whether (vi−1, vi, vi+1) forms an ear. If so,
we clip this ear and store the triangle ∆(vi−1, vi, vi+1)
in the triangle array at position i. Since we consid-
ered only every other vertex, ears that we find cannot
overlap.

Every ear can be clipped only once and for every
clipped ear only one vertex is removed from the poly-
gon. Thus, we can use the index i of a removed vertex
vi as an index for the stored triangle and avoid any
collisions.

The algorithm is designed to work in parallel with-
out locks or atomics. Initially, we start the mark
phase and mark the first half of the contour as de-
scribed above. Then we let all threads but one run
through the first half of the array A in parallel and
check each vertex (cut phase). The remaining thread
marks the second half of the contour and stores the
vertex indices in the second half of A. After all
threads are finished, the procedure starts again with

marking the first half of the remaining contour and
cutting the vertices stored in the second half of A and
so on.

Once only a low number of new triangles can be
generated in a cut phase, we run the sequential version
of FIST on the remaining polygon.

5 Experimental Results

We implemented the parallel variants of FIST as an
on-core parallelization by the use of OpenMP/C++.

Our test system runs CentOS 6.5 on an 2014 Intel
Xeon E5-2667 v3 CPU at 3.20 GHz with 8 cores and
132 GB RAM.

Our implementations were tested on about twenty
thousand polygons with up to four million vertices
per input, consisting of both real-world and contrived
data of different characteristics, including CAD/CAM
designs, printed-circuit board layouts, geographic
maps, closed fractal and space filling curves, star-
shaped and random polygons generated by RPG [1],
as well as sampled spline curves and font outlines.
Some datasets contain circular arcs, which we ap-
proximated by polygonal chains in a preprocessing
step. Similarly, we used the standard (sequential)
FIST to convert all multiply-connected polygonal ar-
eas to (slightly degenerate) simple polygons by insert-
ing bridges.

In our tests, we compare the runtime of our parallel
algorithms to the runtime of the conventional sequen-
tial FIST. The plots of Fig. 4 show the speedups that
we achieved.

We observe the overall best result for the mark-and-
cut algorithm (Fig. 4c), with an average speedup of
8 when using eight cores or 4 when using four cores.
In any case, parallelization seems to pay off once the
input polygon has at least about fifteen thousand ver-
tices. Some test sets yield a speedup of over k while
employing k cores. This is a result of the different
storage structure used in the sequential version of
FIST.

Tests on other systems with up to 64 cores did not

31st European Workshop on Computational Geometry, 2015

0

1

2

3

4

5

0 1,000,000 2,000,000 3,000,000
vertices

sp
ee

du
p

FIST(DC 2) FIST(DC 4) FIST(DC 8)

(a) Divide and Conquer

0.0

2.5

5.0

7.5

10.0

0 1,000,000 2,000,000 3,000,000
vertices

sp
ee

du
p

FIST(PART 2) FIST(PART 4) FIST(PART 8)

(b) Partition and Cut

0.0

2.5

5.0

7.5

10.0

0 1,000,000 2,000,000 3,000,000
vertices

sp
ee

du
p

FIST(MC 2) FIST(MC 4) FIST(MC 8)

(c) Mark and Cut

Figure 4: Speedup of parallelization approaches as a function of input size. In (a), (b), and (c) we see speedups for
different numbers of threads. For the divide-and-conquer approach this is the same as the number of sub-polygons
used.

scale as well as presumed. However, those systems
were multi-CPU systems which seem to behave dif-
ferently than the multi-core system which we used,
for reasons not yet fully understood.

Summarizing, we present experimental evidence
that an algorithm for triangulating polygons based
on ear clipping can be parallelized for efficient execu-
tion on multi-core computers. Since current personal
computers are equipped with quad-core processors,
the triangulation of a polygon can be accomplished
about four times as fast with our parallel variants of
FIST in most cases.

References

[1] T. Auer and M. Held. Heuristics for the Generation of
Random Polygons. In Proc. 8th Canad. Conf. Comput.
Geom (CCCG 1996), pages 38–44, Aug. 1996.

[2] M. Held. FIST: Fast Industrial-Strength Triangulation
of Polygons. Algorithmica, 30(4):563–596, 2001.

[3] M. Held and W. Mann. An Experimental Analysis of
Floating-Point Versus Exact Arithmetic. In Proc. 23rd

Canad. Conf. Comput. Geom. (CCCG 2011), pages
489–494, Aug. 2011.

[4] G. H. Meisters. Polygons have Ears. The American
Mathematical Monthly, 82(6):648–651, June 1975.

[5] M. Qi, T. Cao, and T. Tan. Computing 2D Con-
strained Delaunay Triangulation Using the GPU.
IEEE Trans. Visualizat. Comput. Graph., 19(5):736–
748, May 2013.

[6] G. Rong, T.-S. Tan, T.-T. Cao, and Stephanus. Com-
puting Two-Dimensional Delaunay Triangulation us-
ing Graphics Hardware. In Proc. ACM Symp. Inter-
active 3D Graphics, I3D ’08, pages 89–97, 2008.

[7] I. E. Sutherland and G. W. Hodgman. Reentrant Poly-
gon Clipping. C. ACM, 17(1):32–42, Jan. 1974.

[8] S.-Q. Xin, X. Wang, J. Xia, W. Mueller-Wittig, G.-J.
Wang, and Y. He. Parallel Computing 2D Voronoi Di-
agrams using Untransformed Sweepcircles. Computer-
Aided Design, 45(2):483–493, 2013.

	Introduction
	Prior Work
	Our Contribution
	Parallel Ear-Clipping Algorithms
	Divide and Conquer
	Partition and Cut
	Mark and Cut

	Experimental Results

